Cannabinoids in Clinical Practice

By

J.H. Ennis, MSW, MD, FRCP(C)
Medical Director
East End Multidisciplinary Pain Management Program

Thank-you to Jesse Ennis MD, and Nikki Del Bel for their assistance in the writing of this paper.

Case:

Nancy has been struggling with widespread burning pain related to Multiple Sclerosis. She has been treated with a number of anticonvulsants, tricyclic antidepressants, and opioids, all with limited effect. Nancy asks you about using marijuana. Nancy has never used marijuana before. Her history is negative for substance abuse.

Introduction:

Cannabis has been used for medicinal purposes for thousands of years. The herbal cannabinoid marijuana contains over 60 cannabinoids (CB). Tetrahydrocannabinol (THC) is psychoactive and the main component of smoked marijuana while cannabinol is 90% less psychoactive than THC and cannabidiol has no psychoactivity. (1)

As of 2001 the Marijuana Medical Access Regulations (MMAR) allows Canadian patients suffering from a serious disease to be eligible for therapeutic marijuana consumption. (2)

In Canada, the following cannabinoids (CBs) are available:

1 Sativex contains THC and cannabidiol in an oromucosal spray. The non psychoactive cannabidiol competes with THC for binding sites, diminishing psychoactive side-effects. It has been conditionally approved for the treatment of MS related neuropathic pain, and cancer pain.

2 Dronabinol (Marinol), a synthetic THC, is indicated for chemotherapy induced nausea and vomiting and HIV induced anorexia.

3 Nabilone is a synthetic derivative of THC indicated for chemotherapy induced nausea and vomiting.

4 Herbal form of CB is made available through the Medical Marijuana Access Regulations.(3,4)

Marijuana has been used to treat nausea, illness induced anorexia, symptoms of Multiple Sclerosis (MS), spinal cord injuries, Tourette’s Syndrome, epilepsy, glaucoma, Parkinson’s Disease (PD), Dystonia and Pain. The following is a brief review of the evidence which can assist the clinician in making treatment decisions involving the use of CBs.
Nausea:

Cannabinoids have been identified as being superior to conventional antiemetics in the treatment of chemotherapy induced nausea. However, they are more toxic. (5) Interest in these agents has reduced with the introduction of powerful, low side-effect 5-HT, receptor antagonists such as ondansitron. (5,6)

Appetite Stimulant:

Loss of appetite and weight are often associated with cancer and HIV infection. CBs have been demonstrated to stimulation appetite and weight gain without having a negative impact on HIV disease or treatments. (7)

Multiple Sclerosis:

MS is associated with central pain syndromes, disturbances of the autonomic nervous system, tremor, sleep disturbance and upper motor neuron induced spasm. In the Cannabinoids and Multiple Sclerosis (CAMS) study no objective benefit was noted for spasticity, with objective improvement in mobility. However, subjectively, patients who used CBs reported improvement in pain, spasticity, tremor and bladder control. Adverse events were mild. Trials have demonstrated a positive impact of CBs on central pain related to MS. Sativex has been shown to reduce spasticity and pain with mild adverse events. (8-13)

Spinal Cord Injuries:

Spinal cord injuries can be associated with upper motor neuron spasm and urinary incontinence. Small studies have demonstrated improvement in spasticity, muscle spasms, pain, autonomic dysfunction and sleep quality. (7)

Tourette’s Syndrome:

A limited number of studies have demonstrated that CBs can reduce the vocal and motor tics of this disorder as well as associated behavioural issues such as obsessive compulsive disorder. The use of CBs did not have a negative impact on learning or cognitive ability. (14)
Epilepsy:

THC, has been shown to suppress kindling and could have anticonvulsant properties. However, other data indicate that THC has a proconvulsant effect. To date, no controlled clinical trials exist to support or refute the use of cannabinoids in the treatment of epilepsy. (15)

Glaucoma:

Smoked CB or THC by intraocular drops reduces intraocular pressure. However, the effects are short lived and other medications are more effective in the treatment of glaucoma with fewer side-effects. (7)

Parkinson Disease:

To date, no evidence has been found supporting the use of CB for the treatment of PD symptoms. A pilot study demonstrated that CBs had an impact on levodopa induced dyskinesia. (16,17)

Dystonia:

To date, research has not supported the use of CB in the treatment of dystonia. (17,18)

Pain:

All of the areas of the CNS involved in pain modulation have CB receptors. To date, the evidence is poor for the impact of CB on acute pain and post-operative pain. (7) CBs appear to be equivalent to and not better than Codeine in the management of pain. (19,20) There is evidence that CBs can reduce cancer pain, central pain, HIV induced sensory neuropathy and spasticity related pain. (21-23) Sativex was superior to placebo in the management of pain related to rheumatoid arthritis with some evidence of suppression of disease activity. (24) A recent RCT demonstrated reduction in pain related to the use of nabilone without any change noted in tenderpoint count. Functional outcomes were not measured. (25)
Discussion

CBs can be effective in the treatment of disease induced anorexia and a number of painful conditions. However, adverse events must be considered when using medicinal CBs. In recreational users there is a risk of drug dependence, psychosis, early death (26) and motor MVAs (27). However, these adverse events cannot be extrapolated to patients using CBs for medicinal purposes. In research medicinal CB users had a higher rate of nonserious adverse events than controls. However, the incidence of serious adverse events was low (3). Some of the more common side-effects include dizziness, dry mouth, blurred vision, nausea, muscle spasm, pain, somnolence, sedation, and euphoric mood. (28) It has been concluded that short term use of cannabinoids for medical purposes has an acceptable safety profile. However, there is insufficient information to draw conclusions about safety in regards to long-term use (26).

CBs can have a useful role in the treatment of a number of medical conditions. However, further research is required to determine if CBs will become a common tool in day-to-day clinical practice.